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SUMMARY PAGE

THE PROBLEM

It is frequently assumed that the virtual image of a target viewed through
a rotating mirror moves with respect to the observer at twice the angular rate
of mirror rotation. This assumption is false, and leads to imprecise treatment
of open loop tracking systems. Of particular interest is a class of dynamic
visual acuity experiments in which acuity targets are viewed through a rotating
mirror, where control of image velocity, exposure time, and image dimensions

are of critical importance.

FINDINGS

Expressions are derived which describe the direction of the target image with
respect to the observer as a function of mirror position. This relationship is
nonlinear, and depends upon the distances from the center of rotation of the
mirror (A) to the observer (C), and to the target (B), and upon the included
angle (L BAC). Expressions are further derived for ‘'mage velocity, acceleration,

mirror intercept, and image dimensions as functions of mirror position.
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INTRODUCTION

A majority of the visual and optical scientists who have toured our vision
laboratories during the past three years have been surprised at our statement that
the ocular movement required to track an image viewed through a rotating mirror
is a nonlinear function of the mirror movement. Although the surprise is quickly
abated by a brief explanation, the frequency with which this fact is neglected,
even in laboratory instrumentation, suggests the need for an explicit statement

of the relationships involved.

The laws of reflection predict that the direction of a ray reflected by a
rotating plane mirror will change at twice the rate of mirror rotation in a plane
normal to the axis of rotation. Changes in mirror orientation will result in equal
changes in both the angle of incidence and the angle of reflection of the ray.
However, the sample of rays reflected from a target to an arbitrary tracker
position changes as a function of mirror orientation. The angle of incidence of
these samples is not a linear function of mirror orientation, but depends upon
the relative positions of the target, mirror and tracker, as well as the orientation

of the mirror.

These considerations are of importance, in general, to the design of open
loop tracking systems in which a sensor views the virtual image of a target
through a gimbaled mirror (1, 2) and, in particular, to the configuration of a
class of dynamic visual acuity experiments in which the subject views an acuity

target through a rotating mirror (3).

The purpose of this paper is to derive expressions of the relationships which
determine the viewing angle as a function of mirror position, and to discuss some

of the implications for stimulus control in visual experiments.
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IMAGE DIRECTION: w = f(6)

In a Cartesian coordinate system, let A(xp Y B(xn’ ¥y and C("c’ Ye)
represent the positions of the center of rotation of a plane mirror, a target, and
the center of rotation of the eye, respectively, such that the plane of incidence
is normal to the axis of rotation of the mirror. Let § and w represent the
angular orientation of the mirror and the eye, respectively, as indicated in
Figure 1. The position of the observed virtual image is located at P(xp, y,)
such that the following relationships hold: (a) line Bp L Ar at q(xq, ¥ such
that line segments Iy =l __, and (b) line Cp intersects the mirror at point

qp

) such that ¢, =8, = 0, and line segments 1, = l".

r(xr’ Yy H

The problem is to define eye orientation (w) as a function of mirror
orientation (9). The approach will be to define point p(, y )asa function
p’ Jp

of 0; then w will be defined as a function of line Cp.

Point Uxy ¥y ) may be determined as a function of 6 in the following
manner:

line Aq:  y, =y, *+ (x, - x,) tan 6

line Bq: y = yg — (x, — xy) ctn @
Subtracting and solving for X, We obtain

Yp — YA t x, tan 0 + x ctn 6
x = —=
< tan 6 + cin 6

Then,
Xpg — X, t Yp tan 0 + y, ctn 0

Ya T tan 8 + ctn 8

Since line segment Bp is bisected at q,

5 = % ¥ (5 = %)

q
2 -2 +2x, tan @ — x_ tan 0 + x_ cin @
x =B = Vs A B »

p tan 6 + ctn 0

and

Yo =Ygt (Yg — Vs

)
(2)

3)

@

()
(6)

(?)




Figure 1.

Geometry of the relationship between the target (B), the
center of rotation (A) of mirror gAr, and the center of
rotation of the eye (C), when viewing the target image (p).
The image direction (w) with respect to the eye is a non-
linear function of the mirror angle (6). Parameters of the
relationship are the ratio of distances from center of rotation
of the mirror to that of the eye (l,, ) and to the target
(lya and the angle, BAC, between them (a).
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y=2zfl—2xA+yltan0+2yActn0—ylctn0
p tan 6 + ctn 0
then,
tan w =2 "Je
X, — %g

(xg — x,) 8in 20 + (y, — yg)cos 20 +y, -y,

tan w = -
(yg — ya) sin 20 + (xy — x,) cos 20 + x, — x,

No generality is lost by arbitrarily positioning A(o 0) it the origin, and

C(o y,) ©n the y-axis. This allows equation (10) to be simplified
+ Yo
Xy sin 20 — y, cos 20 — y,

Yp 8in 20 + x, cos 20

tan w = B

IMAGE VELOCITY:-g—;i = f(6)

ince dw= dw do
Since at - de o de
to the eye may be obtained as the product of the mirror velocity and the

derivative of equation (11).

do _ 2|Yo(ys cos 20 — x, sin 26) + 2+ y]

dé 2y, (yn cos8 20 — x, sin 20) + x§ + yi + yi
d?w = ¥olop * Yy — ¥3) (yy sin 20 + x, cos 20)
62 N -

[27,,()', cos 20 — x, sin 20) + x: + y: + ,)':.]'

It is useful to express equations (11), (12), and (13) in terms of the angle

BAC (o), and the distances from the center of rotation of the mirror to that of

the eye (I, ), and to the target (I,,). From Figure 1, we see that
Xy = —l' A sin o

Yp = —lg, cos a

Yo = —loa

, the angular velocity of the target image with respect

8)

9

(10)

(11)

(12)

(13)

(14)

(15)
(16)

& —
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Substituting these in equation (11), and employing the identities,

cos (A + B) =cos A cos B - sin AsinB
sin (A +B) =3in A cos B+ cos A sin B
we obtain

l cos (a0 + 20) +
tan w = -BA ( )

—I.A sin (o + 20)

fea

cos (o + 20) +.‘£€A_

—sin (a + 20)

dw - 21“[1“ + IM cos (a + 26)]

I:A + 2l I\ cos (a+ 20) + l:u

CA cos (u + 20)

1
1 +2 CA cos (a+20)o(lJA.)
lya laa

Pw 4l.Al“ﬂ’!'! —I;A)

do* s 12
[Ba + 20 ,lgs cOs (@ + 20) + 12, ]

sin (a + 268)

! L\
4,—9-‘—[1 —(-9—‘-)] sin (¢ + 20)

= 3a | lsa

! L\
[l + 2 A cos (a0 + 20) +(..9.A) ]
laa Iga

The physical limitations of the problem place the following constraints
upon ¢ and « (see Figure 1):
90° < ¢ < 270°
- 90° < w< 270°
~-180° < a < 180°

17)
(IR)

(19a)

(19b)

(20a)

(20b)

(21s)

(21b)

(22)
(23)
(24)




It should be noted that the mirror angle (6) and the tracker or eye angle (w)

are equal to 02 in the direction of the positive x-axis, and increase with counter-

“clockwise rotation. The angle BAC (a) is equal to 0° in the direction of the

negative y-axis, and increases in the clockwise direction.

Fquation (12) has a minimum (if {;, <l,,) or a maximum (if lea 2 0)
when
YB sin 40 + x, cos 20 = 0, (25a)
that is, when
sin 20 = _ x_!_ =t 20 .
cos 26 Ya an (25b)

From Figure 1 we see that
o | = tan o . (20)
Y

Thus, %‘o—j’ has a minimum (or maximum) when

tan 20 = — tan « (27a)
= tan (3607 _q), (27b)
or, when
6 = 180° — £2’£ (28)
From equation (20b), we find the value of g—‘a‘—’ at its minimum (or maximum)
to be
‘E‘.’ = __,___._2 .. 29
d6 min (or mex) 1 29)
1+ EA
lga

The following limits upon the function %é“—’ = f(6) are apparent from equations
(20a) and (20b):

i d_‘_" =
. i& =
?3\0“ 0 (31)
lim dw - ) (32)
L+l de
CA'BA
6




PARAMETERS: :c‘ y O

BA

We see from equations (19b), (20b), and (21b) that the values of
dw d*w -
do ' do?
angle, rather than upon the individual values of these distances. Therefore, the

w,

f(6) depend upon the ratio of I, to l,,, and their included

l
parameters of these functions are taken to be a and l—ci‘— .

BA

In Figure 2, graphs of go‘—‘? = f(8) are presented for seven values of -:—c—é- .
and for one value of « (a = 0). For the purposes of these graphs it is assumed
that the dimensions of the target and tracker are negligible, and that the tracker

is capable of rotating 860°.

The solid portions of the curves apply to values of 6 over which the target
image may be observed through a rotating mirror of maximum length. That is,
the center of rotation is on the mirror’s midline, and half the mirror’s length
is equal to l,,or I ,, whichever is smaller. The dotted portions-of the curves
apply to an extended mirror whose angular movement is limited in one direction
by the position of the target, and in the other by the position of the tracker
(90° <0 < 270° — ).

When a = 0, as in Figure 2, the tracker, target, and center of rotation of
the mirror are all aligned. If i—g—‘- < 1, counterclockwise rotation of the mirror
causes the target image to move rom right to left, decelerating across the right side
of the mirror through a minimum velocity at 6 = 180° — %‘s, and accelerating across
the left side of the mirror. If the target is closer to the center of mirror rotation
than is the tracker,:—QA > I, the image moves first to the right, accelerating through
:—‘o—f’ = 0, then throug?nAa maximum at ¢ = 1809 — —;‘— , and decelerates across the

. . l
left side of the mirror. If -lﬂ = 1, then g—o‘i = 1 over the applicable range of 6.
BA

e




......... lea S
2_ B ~— _'_B_A_.“'.I ...... :._.:_,-. ot
5_ .
dw | i “::j%/
do :
//"—7’ \;T“.
O_ ........ \ TSI com——— ‘*. ....... e
|

¥

90 20 150 180 210 240 270
6 (degrees)

Figure 2. Rate of change of image direction with respect to mirror
angle as a function of mirror position [% = f(O)] for

seven values of :—9—1 (0.1, 0.5, .75, 1.0, 1.33, 2.0, 10.0;

a = 0). pa




When a = 0, this condition is equivalent to tracking one’s own eye in a rotating
mirror. In each case the minimum (or maximum) value of dow g 2

d l
(equation (29)). I+ 'lié‘

BA
l

Reciprocal values of -€A produce curves which are symmetrical with respect

to gﬁo‘;’— = 1. This is appar'e‘r\lt in Figure 2, and it may be proven by substituting

reciprocal values for -:FA in equation (20b):

BA
2
2 + 2x cos (o + 26) =2t cos (a+20) .
1 + 2x cos (a + 20) + x? - (33)
l+§cos (a+20)+.£l

Graphs of equations (20) and (21) are presented in Figure 3 for four values
of a and one value of f—“— The values represented by the curve on the right

e

side of Figure 3(b) are t.h:, same as those represented by the uppermost curve #
of Figure 2; -;9-‘-‘— = 0.1 and a = 0 in both cases. The scale of the ordinate
in Figure 3 is increased in order to better illustrate the effects of varying o .
The value of a determines the position of the curve along the abscissa, the
minimum occurring at 8 = 180° —-295 (equation (28)). The value of a does

not alter the form of the curve, nor its symmetry with respect to the minimmum 8.

The requirement for this symmetry may be proven by the following:
At o = 180° - &

2‘ ]
cos (o + 20) = cos (¢ + 360° — o) = cos 360° (34)
and,
cos (360° + y,) = cos (360° — y ). (35)

Thus, for values of & which are symmetrical with respect to the minimum,
equation (20) predicts that

dow o dw
(36)
d!h d?_ v,

{
where, ¥, = (180° — 12!-) -9,. ‘




(b)

t }
as 100 80 400 (e

Figure 3.

20 150 180 210 240 270
6 (degrees)

(a) g-%‘i'—" = f6). (b) g—;’ = f(8) . Rates of change of
image direction with respect to mirror angle as functions of
mirror position for four values of a (0%, 40°, 80°, 120°;

€A = 0.1).
BA
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Thus, the function z—‘o‘-’ = f(6) is symmetrical with respect to 6 = 1809 — 52"— ,
and ‘his symmetry is not influenced by the value of « . However, the values of
0 for which the target image may be obscrved through a rotating mirror are determined,
in part, by a . The solid portions of the curves in Figure 3 apply to the values of
8 over which the target is observable through a rotating mirror of maximum length.
The ‘‘observation window™ for a given aperture shifts along the abscissa as a function
of @ . When the midpoint of the aperture is on the axis of rotation, the window
is symmetrical with respect to § = 180° — % only when a = 0. For other values
of a the observation window is no longer centered on 6 = 180° — %— , but shifts
in the direction of a with respect to this point. The magnitude of dw can

dé
easily exceed 2 for an extended mirror. However, dw < 2 for all values of ¢

do

which lie within the observation window of a rotating mirror (1, < lc N
The extent of the observation window depends upon the mirror aperture, which

may be calculated once the mirror intercept, "(x, y ) has been defined.

MIRROR INTERCEPT: T(x, y)
 Je .

The coordinates of the point at which the principle incident ray is reflected

on the mirror may be determined by the intercept of lines Ar and Cr:
line Ar: y =y, +(x, — x,) tan 6 (37)
line Cr: y, =yo * (x, — x5) tan @ (38)

Setting point A(o.o ) at the origin and point C(o.yc ) on the y-axis, and solving

for the intercept, we obtain

= Yo
e tan v - tan w (39)

y = yc tan 6 ) (40)

vr tan 6 — tan w

11




|

The length of line segment I,  is
e =V x + ¥ : (41)

Substituting equations (39) and (40),

2 3
l _ Ye (1 + tan* 6) . 42)

Ar (tan 6 — tan w)?

Employing the identity,
sec2 8 = 1 + tan® 6 43)
we obtain the magnitude of I, :

0
] _ Yg sec . (44)

Ar tan § — tan w

From Figure 1, jt is clear that the mirror intercept is coincident with the center of
rotation of the mirror (lAr = 0) when w = 90°. From equation (19), we see
that when w = 909,
sin (aa + 20) = 0. (45)
Within the physical limitations expressed by equations (22), (23), and (24), this relation-

ship requires that 6 = 180° — & | which is the value of 6 at dow. .
2 dd min (max)

Within the boundaries of the observation window, the aperture limits for
any desired range of 8 may be calculated by substituting equation (19) in equation
(44). When g% is known, the resulting equation may be used to define the aperture

limits which will provide a desired exposure time as is required, for example, in

dynamic visual acuity experiments.

IMAGE DISTANCE: [,

The optical distance from the eye to the target image (I, ) is equal to the

sum of the distance from the eye to the point of reflection on the mmror (1 )
and the distance from the mirror intercept to the target (I, ). These distances

vary as the target is tracked across the rotating mirror.

12




From Figure 1, we see that

e =Vt 0, - yo) (463)
_ Yo sec w (46b)

tan 6 — tan w
e =Vix, - %) + 0y, -y (47
ICD = lc: + llr y | (4'8)

This distance is maximum when the target image is in alignment with the

axis of rotation of the mirror (w = 90°%, 6 = 180° — -‘23).
IMAGE DIMENSIONS: A7 A w

The angular size of the target image also undergoes change as a function
of 6. Both the vertical (parallel to axis of mirror rofah'on) and horizontal
angular dimensions vary because of the changing image distance. The horizontal
dimension undergoes further variation due to the nonlinearity of the function
w = f(6) reflected in equation (19). The angular dimensions of the target image

may be calculated for a given value of 6 in the following manner.

Let the target extend in two dimensions to a height, A z, normal to the
plane of incidence, and a width, A w, normal to !, , along the plane of incidence.

The vertical angle subtended by the target image at the eye is given.by
AT = ta;l' A__z_. R (4'9)

lep
The horizontal angular subtense of a target of width A w may be calculated

with respect to the center of rotation of the mirror to be

Aa=tan' Qw

50
L, (50)

13



Then, equation (19) may be employed to calculate the angular width of the
target image with respect to the eye (A w).

A“’=“’a_"’a+Aa' (51)
where

l
cos (a + h o + 20) + -CA

= tari! BA
Yo+ pa =0 “sin (@ + ba+20) ©2)

In Figure 4 are presented graphs representing angular subtense of the target
image as a function of 0, using two values of a and two values of TQA . The
solid lines represent the vertical dimension (A 7), and the dotted line's‘represent
the horizontal dimension (A w). The ranges of 0 for these plots represent the
observation windows of a rotating mirror whose length is 2l,,, and for which
lae (mex) = lca- In Figure 4(a) and (b), %‘.’—: = O.Si and a = 0°, 809, respectively.
In Figure 4(c), both values of « are represented for f-ﬁ = 0.1. Linear target
sizes have been adjusted so that the minimum visual :nAgle subtended is 0.1° for
both values of lea . Both the angular height and width of the target vary as

l
a function of mirfor orientation. Thes variations are symmetrical with respect

to 6 = 180° — -g- . The effects of changes in image distance with mirror rotation
are seen in the plots of image height, the distance decreasing as 6 deviates from

0 = 180° — % . However, the change in aspect angle with mirror rotation

serves to retard the rate of change of the image width. Further, since image
distance varies as a function of w, the target's angular height will not be uniform

across its width, and this distertion in image height will vary as a function of 4.
DISCUSSION

The dynamic characteristics of an image viewed through a rotating mirror are
governed by two parameters: the ratio of distances from the center of rotation
of the mirror to that of the tracker, and to the target -I-QA- , and the angular

l
displacement of the target from the tracker with respect t0"the mirror’s center

14




TARGET  DIMENSIONS (degrees)

(a)

(b)

~— HEIGHT

(c)

90

Figure 4.

20 150 180 210 240 270
0 (degrees)

Angrilar dimensions of the target image as a function of

l
mirror position. (a) l-o-ﬁ- =05 a=0. (b ;9-&- = 0.5,
« = 80° (c) :.u 8.1, a = 80° 0° The hinum

angle subtended gf the target image in each case is 0.1°.
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of rotation (@). The direction (w) of the target image with respect to the tracker

varies as a nonlinear function of mirror orientation (6), as do the image distance
(lc,) and angular dimensions (A 7, A w).
In general, when the plane of incidence is normal to the axis of mirror

rotation, the function do - f(8) is nonlinear and is symmetrical with respect

dé
to lc—‘ = 1 for reciprocal values of €A . Further, dw - f(6) has a minimum at
BA 9 BA dé
o = 180° — afdw = loa ), and is symmetrical with respect to that value
2\do,, I+ o

BA
of 6 for all values of .©4. and a. This symmetry applies, as well, to variations

in distance (l“) and aRgAular dimensions (A 7, A w) of the targei image as functions
of mirror orientation (). Calculated values of these variables as functions of 6

are represented in Appendix A. The range of mirror orientations (6) over which

the target image may be observed depends upon the aperture of the mirror.

Thus, apertures may be designed to control that segment of the above functions

which is to be observed.

It is frequently assumed that a target image viewed through a rotating mirror
n.oves with respect to the observer at twice the angular rate of the mirror rotation.
Equations (20) and (21) indicate this to be true only in the trivial case where
LA = 0. The only practical case in which do . f(8) is linear occurs when

lga do
lca = lgas then % = ], but the angular height of the target image changes
dramatically.

The significance of these dynamic characteristics of the target image depends,
of course, upon the application. In many cases, the small, dynamic changes
encountered are acceptable. Then, it is required only that adjustmients be made
in estimates of mean values of image variables. Often, it is desired to maximize
the size of the observation window, and to minimize ncceleraﬁom and changes
in image size. This need is served by minimizing %94 and a. Maximizing I,
is directly effective and free of complications. Probiems in minimising 1, , and «
derive from the limensions of the tracker and its ability to obscure the target.

One temptatior may be to displace the target vertically. Resulting variations

16
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in vertical angular displacement, 7, as a function of mirror orientation may be

calculated in the manner of equation (49).

Since g—:‘-’ = g—"'-’ . g% , the function 3% may be linearized exactly by adjusting
the mirror speed, d_g , in accordance with equation (20).
SUMMARY
cos (a0 + 20) + -1-9-1
1. tan w = lpa

- sin (a + ?0)__

2. for rotating mirror I,, < lg,, lya): 0 < 9@ <2

3. a Um ‘ﬁ-"=2,g:-f‘;’=0
lcxo

‘ do
loxlsa

4. for0=180°—%, I-O-A- <1

BA
dw =2
do min 1+ !_Q_A_
I'A
lA: =0
w = 90°
lODm = IOA + lDA
BT & 0y =T.‘—é;!T—
CA BA

17
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w

l l
. de _ CA = y) = )G oA =1
Symmetry: Qe ~1 (for o x) = 1- 38 (for L T E )

dw = dw
do(, min 0' ) doamln +6,)
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APPENDIX A

Calculated Values of w, 9

b’ “%%‘3, lay lop» & 7, O w as Functions ¢
é
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